Models in the Exploration ofStructure - Activity Relationships inDrug
نویسنده
چکیده
We report on a study of mixture modeling problems arising in the assessment of chemical structure-activity relationships in drug design and discovery. Pharmaceutical research laboratories developing test compounds for screening synthesize many related candidate compounds by linking together collections of basic molecular building blocks, known as monomers. These compounds are tested for biological activity, feeding in to screening for further analysis and drug design. The tests also provide data relating compound activity to chemical properties and aspects of the structure of associated monomers, and our focus here is studying such relationships as an aid to future monomer selection. The level of chemical activity of compounds is based on the geometry of chemical binding of test compounds to target binding sites on receptor compounds, but the screening tests are unable to identify binding conngurations. Hence potentially critical covari-ate information is missing as a natural latent variable. Resulting statistical models are then mixed with respect to such missing information, so complicating data analysis and inference. This paper reports on a study of a two-monomer, two-binding site framework and associated data. We build structured mixture models that mix linear regression models, predicting chemical eeectiveness, with respect to site-binding selection mechanisms. We discuss aspects of modeling and analysis, including problems and pitfalls , and describe results of analyses of a simulated and real data set. In modeling real data, we are led into critical model extensions that introduce hierarchical random eeects components to adequately capture hetero-geneities in both the site binding mechanisms and in the resulting levels of eeectiveness of compounds once bound. Comments on current and potential future directions conclude the report.
منابع مشابه
A closer look at rock physics models and their assisted interpretation in seismic exploration
Subsurface rocks and their fluid content along with their architecture affect reflected seismic waves through variations in their travel time, reflection amplitude, and phase within the field of exploration seismology. The combined effects of these factors make subsurface interpretation by using reflection waves very difficult. Therefore, assistance from other subsurface disciplines is needed i...
متن کاملQuantitative Structure - Activity Relationships Study of Carbonic Anhydrase Inhibitors Using Logistic Regression Model
Binary Logistic Regression (BLR) has been developed as non-linear models to establish quantitative structure- activity relationships (QSAR) between structural descriptors and biochemical activity of carbonic anhydrase inhibitors. Using a training set consisted of 21 compounds with known ki values, the model was trained and tested to solve two-class problems as active or inactive on the basi...
متن کاملThe Application of Recursive Mixed Models for Estimating Genetic and Phenotypic Relationships between Calving Difficulty and Lactation Curve Traits in Iranian Holsteins: A Comparison with Standard Mixed Models
In the present study, records on 22872 first-parity Holsteins collected from 131 herds by the Animal Breeding and Improvement Center of Iran from 1995 to 2014 were considered to estimate genetic and phenotypic relationships between calving difficulty (CD) and the lactation curve traits, including initial milk yield (Ap), ascending (Bp) and descending (Cp) slope of the lactation curves, peak mil...
متن کاملA Priori Prediction of Tissue: Plasma Partition Coefficients (Log BP) of Drugs to Facilitate the Use of MLR and MLR-GA Methods
It is important to determine whether a candidate molecule is capable of penetrating the plasma-brain barrier indrug discovery and development. The aim of this paper is to establish a predictive model for plasma-brainbarrier penetration using simple descriptors The usefulness of the quantum chemical descriptors, calculated atthe level of the DFT and HE theories using 6-310* basis set for QSAR st...
متن کامل